
The Conjugate Gradient Method with Even Less Pain

Alasdair Paren

March 2025

Abstract

The Conjugate Gradient Method is the most prominent iterative method for solving sparse sys-
tems of linear equations. Many textbook treatments of the topic are written with neither illustrations
nor intuition, their victims can be found to this day babbling senselessly in the corners of dusty li-
braries [1]. Fortunately a fantastic monograph [1] makes the elegant ideas of Conjugate Gradient
Method more approachable. This set of notes is aimed to be even more basic and to the point
an introduction to that wonderful introduction. Covering the bare essentials, namely the big idea
behind The Conjugate Gradient Method, how the updates are derived and informally proving some
of its nice properties.

1 The Conjugate Gradient Method

1.1 Problem

The Conjugate Gradient Method (CG) in its most basic form is designed to solve problems of the form:

Ax∗ = b (1)

where x∗, b ∈ Rn and A ∈ Rn×n is a positive semi-definite matrix. CG is especially well suited for
sparse A, where a high fraction of the entries are zero, however sparsity will be one of the last aspects
of this algorithm that we cover. CG can equivalently be used to find the optimal point of well posed
unconstrained quadratic problems:

x∗ argmin
x

Q(x) ≜x
1

2
x⊤Ax− b⊤x. (2)

The gradient of (2) at a point x has the form:

∇xQ(x) = Ax− b, (3)

and hence finding ∇xQ(x) = 0 requires the same computation as solving (1) directly.

1.2 Notation

As CG often uses the negative gradient direction let us define:

gt ≜ −∇xQ(x) = b−Axt. (4)

Any point x that satisfies the first order optimality conditions must have:

0 = Ax∗ − b, (5)

b = Ax∗. (6)

1



Combining this with (3) and (6) gives:

gt = −∇xQ(x) = −A(xt − x∗) = −Aet, (7)

where the last equality comes from defining the difference or error between a point xt and x∗ as:

et ≜ xt − x∗. (8)

1.3 Inverting A

The most naive way to solve a problem of the form of (1) is to simply compute the inverse of A giving:

x∗ = A−1b. (9)

However, without specialised matrix inversion algorithms1 this approach has computational complexity
O(n3), and thus is very slow for large problems. The Conjugate Gradient Method aims to do better,
in fact it offers an iterative algorithms that takes T steps to compute the exact solution, where T is
dependent on the sparsity, under some mild assumptions such as infinite precision. In the worst case
T = n, this is in contrast to most iterative approaches that only asymptotically approach x∗.

1.4 A-orthogonality

Two vectors x and y are said to be A-orthogonal if for a positive definite matrix A they satisfy:

xTAy = 0 (10)

1.5 Big Idea

The big idea behind CG is to consider that the solution can be written in the following form:

e0 = x0 − x∗ =

k−1∑
i=0

δidi, (11)

where for any i ̸= j, di,dj ,∈ {d1, . . . ,dk} are non-zero A-orthogonal vectors, δi are unknown scalars
nad k is rank of A. In this introduction to CG we don’t formally prove that such a decomposition exists
given any choice of d1.

From the definition of the eigenvectors {z1, . . . , zk} of a matrix A, where the eigenvectors satisfy
Azi = λzi, for some scalar λ and using the fact that the eigenvectors form an orthogonal basis it can be
shown that the eigenvectors form such a decomposition, by pre-multiplying the definition by a different
eigenvector i ̸= j. However, this is a unique case where the directions are both orthogonal and A-
orthogonal, in general a set of A-orthogonal vectors won’t be orthogonal. Finally, it is easy to show that
two co-linear directions di and dj would not be A-orthogonal for any non-zero A ≻ 0, considering a
single element of the left hand side of (10).

1.6 Why A-orthogonality?

Why not just assume the directions d are orthogonal? In this section we hope to give some motivation
behind what makes A-orthogonality, the right choice for problems of the form (1) and (2). Let us consider

1These lower the complexity O(n∼2.5), but normally require, additional “adds” or additional assumptions such as n
being a power of 2.

2



how the function value Q(x) changes when moving along two directions unit d1 and d2 by amount α1

and α2 respectively:

Q(x+ α1d1 + α2d2) =
1

2
(x+ α1d1 + α2d2)

⊤A(x+ α1d1 + α2d2)− b⊤(x+ α1d1 + α2d2) (12)

multiplying out the quadratic terms,

=
1

2
x⊤Ax+

1

2
α2
1d

⊤
1 Ad1 +

1

2
α2
2d

⊤
2 Ad2 + α1x

⊤Ad1 + α2x
⊤Ad2 + α1α2d

⊤
1 Ad2 − b⊤(x+ α1d1 + α2d2)

and taking gradient with respect to α1 and α2 gives:

∇α1
Q(x+ α1d1 + α2d2) = α1d

⊤
1 Ad1 + x⊤Ad1 + α2d

⊤
1 Ad2 − b⊤d1,

∇α2
Q(x+ α1d1 + α2d2) = α2d

⊤
2 Ad2 + x⊤Ad2 + α1d

⊤
1 Ad2 − b⊤d2.

Notice how the penultimate term in each gradient expression depends on the other variable, with ∇α1

being a function of α2 and vice versa. In order to remove this dependance we need the term d⊤
1 Ad2 to

equal zero, which is exactly the A-orthogonality definition. With A-orthogonal directions d⊤
1 Ad1 = 0,

the optimal distance to move in one direction d1 is not affected by how far one might have already
moved, or will later move in direction d2. Hopefully, it is clear why a decomposition of this form might
be particularly useful, as we can hopefully move in each direction exactly once when finding the minimum
of problem (2). This is in contrast to gradient methods such as SGD that often move in similar directions
at different iterations, such as when zig-zagging down a valley, as seen in Figure 1a. While the example
here only considers two directions it should be easy to see that this behaviour extends to a general set
of n A-orthogonal directions. Finally, notice that the basis vectors u1,u2, . . .un would only have this
property for diagonal A, as if there is a non-zero off-diagonal element aij , then u⊤

i Auj = aij ̸= 0.

2 Update

Given this insight at a time step t we aim to use the update:

xt+1 = xt + αtdt, (13)

where we aim to choose the directions dt such that ∀t, j : t > j ≥ 0, d⊤
t Adj = 0, or, in words, we aim to

choose the directions so that all dt are A-orthogonal. We will cover how we select these directions later.
We first assume we get the directions dt from an oracle and consider how to select the step size αt at
each time step.
In order to minimise Q(x) on each step we want to find where ∂

∂αt
Q(xt+1) = ∂

∂αt
Q(xt + αtdt) = 0.

By chain rule: ∂
∂αt

Q(xt+1) = ∂xt+1

∂αt
· ∂
∂xt+1

Q(xt+1) = −dtgt+1. Hence the minimum is found when

g⊤
t+1dt = 0, or in words when the gradient at the next point is orthogonal to the current search direction

dt. Note, this is worth remembering as it will prove useful later on. Starting from this fact, we can derive
the following update for αt:

g⊤
t+1dt = 0,

(b−Axt+1)
⊤dt = 0,

(b−A(xt + αtdt))
⊤dt = 0,

(b−Axt + αtAdt)
⊤dt = 0,

(gt + αtAdt)
⊤dt = 0,

g⊤
t dt + αtd

⊤
t Adt = 0.

3



Rearranging gives:

αt =
d⊤
t gt

d⊤
t Adt

. (14)

Alternatively:

Q(x+ αtdt) =
1

2
(x+ αtdt)

⊤A(x+ αtdt)− b⊤(x+ αtdt),

Q(x+ αtdt) =
1

2
x⊤Ax+

1

2
α2
td

⊤
t Adt + αtd

⊤
t Ax− (x+ αtdt)

⊤b,

∂

∂αt
Q(x+ αtdt) = αtd

⊤
t Adt − d⊤

t (Ax− b) = αtd
⊤
t Adt − d⊤

t gt.

Setting ∂
∂αt

Q(x+ αtdt) = 0 and rearranging recovers the same result αt =
d⊤
t gt

d⊤
t Adt

.

2.1 Consequences of this step size

We now show that αt = −δt as defined in (11).

Proof. We start from our definition of e0 =
∑n−1

i=0 δidi and premultiply by d⊤
j A:

d⊤
j Ae0 =

n−1∑
i=0

δid
⊤
j Adi,

d⊤
j Ae0 = δjd

⊤
j Adj ,

δj =
d⊤
j Ae0

d⊤
j Adj

,

δj =
d⊤
j Ae0 +

∑j−1
i=0 αid

⊤
j Adi

d⊤
j Adj

,

Note, we can add
∑j−1

i=0 αid
⊤
j Adi in the last line as it is is equal to 0 due to A-orthogonality. Factorising

gives:

δj =
d⊤
j A(e0 +

∑j−1
i=0 αidi)

d⊤
j Adj

.

Notice from (8) et = xt − x∗ thus given xt = x0 +
∑t−1

i=0 αidi, we get et = x0 +
∑t−1

i=0 αidi − x∗ using

e0 = x0 − x∗ we get et = e0 +
∑t−1

i=0 αidi. Plugging this in gives:

δj =
d⊤
j Aej

d⊤
j Adj

= −
d⊤
j gj

d⊤
j Adj

.

Where the last equality is a result of (7). Comparing αt and δj it is clear that αt = −δt.

Thus if we are given one of the A-orthogonal directions at each time step by using (13) we simply
remove one element from the sum on the right hand side of (11). After after taking k steps using we get

xt = x0 +
∑k−1

t=1 αtdt plugging this into x0 = x∗ +
∑k−1

i=0 δidi, (11) we get:

xt = x∗ +

k−1∑
i=0

δidi +

k−1∑
t=0

αtdt,= x∗ +

k−1∑
i=0

δidi −
k−1∑
t=0

δtdt, (15)

and hence on the kth step we return a point xk = x∗ and ek = 0.

4



3 Finding A-orthogonal Directions

One way of finding a set of A-orthogonal directions is Gram-Schmidt Conjugation. Gram-Schmidt
Conjugation starts with a set of orthogonal direction {u1, . . . ,ut}, say the set of axis aligned unit
vectors. Then, at each step we simply select the next search direction dt by removing the projection of
all previous directions onto the next orthogonal vector ut, via an update of the form:

dt = ut +

t−1∑
k=1

βtkdk, (16)

where the scalars βtk are defined for k < t. To find the values βtk, we use the same trick as to find αt

transposing and post-multiplying by Adj , ∀ 0 < j < t:

d⊤
t Adj = u⊤

t Adj +

t−1∑
k=1

βtkd
⊤
k Adj , (17)

0 = u⊤
t Adj + βtjd

⊤
j Adj , (18)

βtj = −
u⊤
t Adj

d⊤
j Adj

. (19)

This procedure would require storing all previous directions dj and Adj and thus require O(n2) mem-
ory. Additionally it would also require t dot products be completed at step t making the number of
multiplications required in the Gram-Schmidt Conjugation scale quadratically with the iteration count.

3.1 The Gradient is Orthogonal to Previous Search Directions

We now show the gradient at time gt is perpendicular to all previous directions dk for t ≥ k.

Proof. We start from the definition of et:

et = xt − x∗ = x0 +

t−1∑
i=0

αidi − x∗ = e0 +

t−1∑
i=0

αidi =

n∑
i=0

δidi −
t−1∑
i=0

δidi =

n∑
i=t

δidi.

This lets us define the following:

et =

n∑
i=t

δidi.

Pre-multiplying by d⊤
j A:

d⊤
j Aet =

n∑
i=t

δid
⊤
j Adi,

−d⊤
j gt = −

n∑
i=t

δid
⊤
j Adi.

If j ≤ t all terms in the sum are zero due to the A-orthogonal property and we get:

d⊤
j gt = 0, ∀j ≤ t. (20)

5



3.2 The Second Big Idea - The Gradient Direction form an Orthogonal Basis

The second big idea of the Conjugate Gradient Method is to use the gradient directions gt as the
orthogonal basis of vectors in the Gram-Schmidt Conjugation, instead of the set of axis align vectors ut

described above. We do this by setting:

d0 = g0, dt = gt +

t−1∑
k=1

βt,kdk, (21)

to construct the next direction βt,k is calculated as described in (19) with ut = gt. Note, we have
relabelled the indexes in the following equation:

βi,j = −
g⊤
i Adj

d⊤
j Adj

, ∀ 0 < j < i. (22)

We next show that the gt vectors do indeed form an orthogonal basis by showing:

g⊤
t gk = 0, ∀t > k. (23)

Proof. From (21) it follows that the direction at time t can be written as a linear combination of all
previous negative gradient directions:

dt =

t−1∑
k=0

γkgk,

where γk are non-zero scalars. From (20) we have that g⊤
t dj = 0, ∀j ≤ t, as the past directions dj∀j ≤ t

are all linear combinations of the previous gradients via induction the current negative gradient direction
gt must be orthogonal to the previous gradient directions also.

While at first the choice to use the gradient directions as the orthogonal basis might just seem like a
nice property, in fact this choice leads to βtk = 0 for t ≥ k + 1, or in words, that at each time step all
constants β bar βt,t−1 in the Gram-Schmidt Conjugation are zero, and thus we only need to store and
remove the projection of the last descent direction dt−1.

Proof. We start by showing that the current gradient gt can be calculated from the previous using:

gt+1 = −Aet+1 = −A(xt+1 − x∗) = −A(xt + αtdt − x∗) = −A(et + αtdt) = gt − αtAdt. (24)

Now we pre-multiply (24) by g⊤
i and arrearage, giving:

g⊤
i gt+1 = g⊤

i gt − αtg
⊤
i Adt, (25)

g⊤
i Adt =

1

αt
g⊤
i gt −

1

αt
g⊤
i gt+1. (26)

However form (23) we have g⊤
i gj = 0, i ̸= j, Hence we now investigate the value of g⊤

i Adt using
(26) for different values i:

g⊤
i Adt =


1
αt
g⊤
i gt, i = t,

− 1
αt−1

g⊤
i gt, i = t+ 1,

0, otherwise.

(27)

6



From equation (22) we have:

βi,j = −
g⊤
i Adj

d⊤
j Adj

, ∀ 0 < j < i. (28)

This lets us show:

βi,t =

{
1

αt−1

g⊤
i gi

d⊤
t−1Adt−1

, i = t+ 1,

0, i ≥ t+ 1.
(29)

Thus the only no zero β is βt,t−1:

βt,t−1 =
1

αt−1

g⊤
i gi

d⊤
t−1Adt−1

.

3.3 Simplifying Alpha and Beta

While we have demonstrated that we only need to calculate βt,t−1 as all other betas are zero, we can
simplify its form significantly. We start by recalling the definition of αt form:(14):

αt =
d⊤
t gt

d⊤
t Adt

.

Inverting and writing in terms of t− 1 gives:

1

αt−1
=

d⊤
t−1Adt−1

d⊤
t−1gt−1

.

This gives:

βt,t−1 =
1

αt−1

g⊤
i gi

d⊤
t−1Adt−1

=
d⊤
t−1Adt−1

d⊤
t−1gt−1

g⊤
i gi

d⊤
t−1Adt−1

=
g⊤
i gi

d⊤
t−1gt−1

(30)

We now show that the search direction dt, satisfies d
⊤
t gt = g⊤

t gt. Starting from (21):

dt = gt +

t−1∑
k=1

βtkdk. (31)

Post-multipling by gt gives:

d⊤
t gt = g⊤

t gt +

t−1∑
k=1

βtkd
⊤
k gt.

Using (20) where we showed d⊤
i gt = 0, ∀ i ≤ t we can write:

d⊤
t gt = g⊤

t gt. (32)

Plugging this into the denominator of the right hand side of (30) gives:

βt,t−1 =
g⊤
i gi

g⊤
t−1gt−1

(33)

Finally we can again use (20) to write αt as:

αt =
d⊤
t gt

d⊤
t Adt

=
g⊤
t gt

d⊤
t Adt

7



4 Algorithm

We can now put everything together into the CG Algorithm. CG starts at a point x0 (typically x0 =
[0, 0, . . . , 0]⊤) and chooses the first direction d0 to be the negative gradient direction d0 = g0 = Ax0−b.
CG then proceeds using the following updates:

αt =
g⊤
t gt

d⊤
t Adt

,

xt+1 = xt + αtdt,

gt+1 = gt − αtAdt,

βt+1 =
g⊤
t+1gt+1

g⊤
t gt

,

dt+1 = gt+1 − βt+1dt,

k = k + 1.

Alternatively, this can be expressed as the following algorithm:

Algorithm 1 The Conjugate Gradient Method

1: procedure Conjugate Gradient(A, b,x0, tolerance,max iterations)
2: x← x0, g ← Ax− b, d← g, k ← 0
3: while ∥g∥> tolerance and k < max iterations do

4: α← g⊤g
d⊤Ad

5: x← x+ αd
6: gold ← g
7: g ← g − αAd

8: β ← g⊤g
gold⊤gold

9: d← g + βd
10: k ← k + 1

11: return x

4.1 Computational Complexity and Sparsity

Computing Adt dominates the per iteration computational complexity, at a cost of O(n2). Thus the
complexity of the algorithm for any A is O(Tn2), where T is the total number of iterations. In the worst
case where n steps are required, we recover the O(n3) cost of inverting A directly. This might seem
discouraging at first, if A is sparse computing Adt has a cost of O(Φ(A)) where Φ(·) is a function that
returns the number of non-zero elements of its input.

Additionally the number of iterations required is bounded by the rank of A which we denote rank(A).

While we don’t prove this formally, after the rank(A)
th

iteration of CG we will have found the optimal
point in the linear subspace spanned by A as we have explored rank(A) different directions.

Putting this together we get the computational cost of CG is O(Φ(A)rank(A)). For high sparsity

levels Φ(A)
n2 <<< 1 we get orders of magnitude savings in both computation and memory. This has lead

to CG being the go to algorithm for problems of this form.

8



4.2 Computational Considerations

In Algorithm 1 in order to avoid computing the matrix vector product Axt+1 the gradient gt+1 is
calculated based on the previous gradient using gt+1 = gt − αtAd, see (24). When the algorithm is
run on a device with finite precision small errors can accumulate, and the iterates can drift from their
theoretical trajectory. In order to avoid this, it is typical to compute the negative gradient direction
exactly gt = b − Axt every few steps [1]. There are other useful tricks and modifications that can be
applied to CG, however, these are beyond the scope of this introduction.

4.3 Empirical Comparison to Gradient Descent

While Gradient Descent (GD) and Stochastic Gradient Descent (SGD) have become the most ubiquitous
optimisation algorithms. When considering problems of form (2) CG offers a significant advantage both
in its theoretical properties and in practice. Figures 1a and 1b shows GD (with an optimal step size
αt) and CG respectively finding the minimum of a two dimensional quadratic, as can be seen CG only
requires two steps to find the optimal point while GD approaches it asymptotically. For a more in depth
comparison of these two methods we again direct the reader towards [1].

(a) Gradient Descent (b) Conjugate Gradient Method

Figure 1: GD and CG applied to at two dimensional quadratic minimisation of form (2).

References

[1] J. R. Shewchuk. An introduction to the conjugate gradient method without the agonizing pain. 1994.

9


