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What is Optimisation?
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The area of maths behind the selection of a best element from some set of 
candidates, with respect to some criterion or objective
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• Most State-Of-The-Art (SOTA) AI systems employ large neural networks 
trained on large data sets

• Training neural networks requires optimising a very high dimensional, non- 
convex optimisation problem, computed over a very large training set

Why is Optimisation Important 
to Machine Learning?



Visualization of a Neural Network Loss Function



We want to optimise (typically minimise) scalar valued "loss functions" that 
quantify the error of the model

Desirable properties:
• Bounded below (typically by zero)

• Continuous

• Smooth

• Convex

• Cheap to calculate

• Finite-sum Structure

Loss Functions



• Convex / Non-Convex

• Constrained / Non-Constrained

• Discrete / Continuous / Mixed Integer Programming

• Stochastic / Deterministic 

• Gradient Free / First Order / Second Order

• Reinforcement Learning

Types of Optimisation



Quiz time (1/4)



Quiz time (2/4)



Quiz time (3/4)



Quiz time (4/4)



Positive Definiteness



For a scalar output multivariate function with d inputs what is the Hessian?

Multivariate Functions



Multivariate Functions



Taking Derivatives w.r.t matrices or vectors:



Taking Derivatives w.r.t matrices or vectors:

https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf
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Taking Derivatives w.r.t matrices or vectors:
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Taylor Expansions



Convex Functions

  

        

          



Convex Functions



Convex Sets
A B



Convex Sets



Convex Sets



Lipschitz Continuity



Lipschitz Continuity



Why is Lipschitz Important?



Smoothness



Smoothness
Do you think the below function is smooth?



Optimisation Problems



The formulation you will find in the 
literature



Optimisation Standard Set Up



Some examples:



Some examples:



Some examples:



Some examples:



Focus of this Lecture:



Finite Sum Loss Functions



Regularisation



Optimisation Algorithms



• Gradient Free – Only uses function value information

• First Order Methods – use function value and gradient information

• Second order methods – use function value, gradient and Hessian information

• Stochastic Optimisers – only use approximate function information  which has 
been evaluated on a subset of the training data set

+ Many others

Types of Optimiser



Gradient Descent (GD)
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Gradient Descent (GD)
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Gradient Descent (GD)
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Gradient Descent



Gradient Descent
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Gradient Descent (GD)
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Gradient Descent (GD)
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What went wrong here?



Provable Progress





Line Search Methods

w

wt

f(
w
)

wt+1



Line Search Methods



Line Search Methods



Line Seach Methods



Line Search Methods



Line Search Methods



Secord Order Methods



Secord Order Methods

What do you notice about this update?



Stochastic Gradient Descent (SGD)



GD
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Momentum

https://production-media.paperswithcode.com/methods/Screen_Shot_2020-05-28_at_3.25.40_PM_Y687HvA.png



Momentum



Momentum

What happens to the update if the gradient is 
constant?



• Poorly scaled dimension – high condition number

What is causing this zig-zagging?



What is causing this zig-zagging?

Dimension with very different scales:
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Adam



• What if you don't have access to the gradient?

• One must use optimisers that rely on function values

• Many gradient free optimisation algorithms exist 

• In this class we use the "3 point" method as an illustrative example

Gradient Free Optimisation



Gradient Free Optimisation

What do you think might be the disadvantages of this approach?



Time for some exercises
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