ENGINEERING

SCIENCE OXFORD

%6 DEPARTMENT OF

An Introduction to Uptimisation

Alasdair Paren - alasdair.paren@eng.ox.ac.uk




What Is Uptimisation? s
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The area of maths behind the selection of a best element from some set of
candidates, with respect to some criterion or objective

objective/loss/error
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« Most State-Of-The-Art(SOTA)AIl systems employ large neural networks
trained on large data sets

* Training neural networks requires optimising a very high dimensional, non-
convex optimisation problem, computed over a very large training set
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We want to optimise (typically minimise) scalar valued "loss functions" that
quantify the error of the model

Desirable properties:

* Bounded below (typically by zero)
« Continuous

e Smooth

« Convex

* Cheap to calculate

 Finite-sum Structure




Types of Optimisation (g =

* Convex/ Non-Convex

e Constrained/ Non-Constrained

* Discrete / Continuous / Mixed Integer Programming
e Stochastic / Deterministic

e Gradient Free / First Order / Second Order

e Reinforcement Learning
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If f(w) =w? — 4w + 16, whats is min f(w)?

SL a0
C)

B
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If f(w) = max{—w,w, 3(w+ 3)} (point-wise maximum), what is argmin,,cp f(w)?

1. -2
. -1
3. 1

4. 2
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If x" Ax > 0 for all none zero x, and a square matrix A € R?4 We call A:
1. Full Rank
2. A Negative Definite Matrix
3. A Negative Semi-Definite Matrix

1. A Positive Semi-Definite Matrix




Positive Uef

ENGINEERING
SCIENCE

t e m e S S ﬁﬂ DEPARTMENT OF
N

2.1 Positive Definiteness

A square matrix A € R?*4 is positive definite if for all none zero x, x' Ax is positive. Formally:

vx eRN0Y, x'Ax >0.

If the above inequality hold in equality A is known as positive semi-definite
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Multivariate Functions gggﬁﬂéﬁgﬁm

For a scalar output multivariate function with d inputs what is the Hessian?
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2.1 Scalar Output Multivariate Functions

Let us consider a multivariate function f(w):

f:R* > R.
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Taking Derivatives w.r.t matrices or vectors: (1 s
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Suppose we have a scalar function f = x'y, where x,y € R? then:

Vif(x)=y.

Tx, where x € R? then:

Now suppose we have a scalar function f = x
Vxf(x) =2x

If in doubt calculate the gradient for one element and then construct the vector of partial derivatives:

fox) =)

0f (x)
83;1-

29&‘1
2.7;2

2$d
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Taking Derivatives w.r.t matrices or vectors: d/d

If x € R%, H € R**? and symmetrical, What do you think the derivative of the following is?

f(x) =x"Hx, V. f(x) ="

https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf
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Taking Derivatives w.r.t matrices or vectors: (1 s
QD SCIENCE

f(x) =x"Hx = [z

E E z;jxihi; =x1T1h11 + 122012 + T123h1 3 + - - + T1Tah1 4,

v J

+xox1ho 1 + x2x2ho 2 + Tox3ho 3 - - + T2z gha 4,
+x3x1h3 1 + x32203 2 + T3T3h3 3+ - - + T3T N3 4,
...,

+zqx1ha1 + xax2ha2 + Taxshas + -+ zaxahd,q.

https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf



ENGINEERING | wuveesr or
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i

0
z; Z Z z;xihi; | =2x:hii + x2hi2 + x3his + -+ Tahi g,
’ J

+ x2ho; +0+0---+0,
+ 23h3; +0+0---+0,

+zghg; +0+0+---+0.
As H is symmetrical:

0
% Z Z mj:cihi,j zzmthz,z + 2$2hz’,2 + 2533}%-,3 + .- 4 Zmdhi,d
’ J

)

:2H,,;,:x
Thus considering the derivative w.r.t x rather than z;:

-QHL;X-
QHQ,;X

0
67){ szjibihi,j =
g

_ZHd,;X_

https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf




faylor Expansions o o

2.3 Taylor Expansions

A function f at a a point w; can be approximated by its first order Taylor expansion around this point:
f(w) = f(we) + Vf(we) ' (w—wy)

A function f at a a point w; can be approximated by its second order Taylor expansion around this
point:

Fw) % f(w0) + VI (we) (w = we) + 5 (w = we)T Hy(w = wy)




Convex runctions

ENGINEERING

SCIENCE OXFORD

%ﬂ DEPARTMENT OF

Convex
Non Convex
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2.4 Convex Function
A function f is convex if for any x,y:

Fx) > f@)+ Vi)' (x-y),
A function f is strictly convex if for any x, y:

fx) > f(y)+ Vi) x-y),

A twice differentiable convex function will have a positive semi-definite Hessian. A twice differentiable
strictly convex function will have a positive definite Hessian.




Convex sets A i ®

Which sets are convex?

1. A

2. B

3. Both
4. Neither




3.6 Convex Set

A set Q) is convex if for any x,y € 2 and any A € [0, 1]:
AX+(1-XNy e

Alternatively:
A set 2 is convex if there exists a convex function f that Vx € 2 f(x) < k and for all x ¢ Q f(x) > k
where k is some constant.
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Euclidean Projection let us define the euclidean Projection operation onto a set 2 as:

Mo(w¢) = minfw — wi”.

Euclidean Projection onto a convex set decreases the distance to every point in the set, thus it always
reduces the distance to an constrain optimum. Formally if we define:

w, = argmin f(w)
WEw
Then we have for all w in R¢:

[w, — wl[3> |lw. — TIa(w)|[3
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_ipschitz Continu

A function f is C-Lipschitz over a set 2 with respect to a norm ||-|| if for any x,y € €:
17(x) = F¥)Il < Clly — x|
Most commonly started with reference to the #; norm, or:
[f(x) = f(¥)| < Cly —x].

Alternatively:

Vf(X)SCaVXEQ
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Why is Lipschitz Important? & g ..
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Smoothness %6 |
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A function f is f-Smooth over a set Q2 with respect to a norm ||-|| if for any x,y € Q:

IVF(x) = Vi)l < Blly — ||

This is normally defined in terms of the #; norm:

IVf(x) = Vf(y) < Bly —x|.

Alternatively:

Yxy €0, [f(x) ~ F(¥) - Vi) (x-y)I< S x -y

Finally if f is twice differentiable, then f is S-smooth if and only if for any x,y € R%:

HxTy < Bx]|lyll
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Do you think the below function is smooth?
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min f(w)
s.t. gi(w)=0 fori=1,...,n Equality constraints

s.t. hj(w)>0 fori=1,...,m Inequality constraints
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Some examples: A | 2
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Convex Optimisation

Q C R,
() is a convex set,
f: Q2 =R,

f is a convex function.




: (1]
Some examples: ) e

Linear Programming

min CTW,

s.t. Aw < b,
w > 0,
and w € R%.

fw)=c'w, Q={w|AweR? w<b, and w > 0}




Some examples: - |2
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Discrete Optimisation

0 (_: Rd,
Where () is a discrete set. For example 2 = {0, 1},
f: Q=R




Some examples: %6 e | P
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Integer Programming

min ¢'w

s.t. Aw+s <b,
w > 0,
s > 0,

and w e Z<.

Q={w|Aw+s€Z% w<b, and w > 0,s > 0},
ey, —3,—2,-1,0,1,2,3,... }
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Unconstrained Optimisation

min f(w),
s.t. wE€ Rd,
f:RY S R.
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5.11 Finite Sum loss functions

F) 2 3 L) & Bz lb(w)

Can you think of a type of loss that would not naturally exhibit a finite sum structure?

Squared Loss

Squared Loss : £,(y,y%) = |ly — ¥*|I3

Cross Entropy

Cross Entropy Loss : £,(y.,y:) = — Z yrlog(ye)
ceC

For the cross entropy loss both y, and y; should be vectors denoting a probability distribution (D, y.; =
1, y,; >0, Vi). How can we ensure we have this property? One choice is the softmax.
exp X

Softmax(x) = ————
Y . exp;
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5.12 Regularisation Functions
F(w) = f(w) + AR(w)

L2 Regularisation - Weight Decay

L2 Regularisation : R, (w) = ||w||3

L1 Regularisation - Lasso

L1 Regularisation : R,,(w) = ||W||1
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Types of Uptimiser B

» Gradient Free - Only uses function value information
 First Order Methods - use function value and gradient information
« Second order methods - use function value, gradient and Hessian information

 Stochastic Optimisers - only use approximate function information which has
been evaluated on a subset of the training data set

+ Many others
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Wyi1 = argmin { f(w;) + V f(w;) ' (w —wy) } .

weRd
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Wit = argmin{1|w w2 F(we) + V f(wr) T (w — wf.)} .

weld 27]1;
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Wit = argmin{1|w w2 F(we) + V f(wr) T (w — wf.)} .

weld 27]1;
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5.1 Gradient Descent

. 1
Wil = argmln{2|w — wi|2+f(wy) + VF(wy) ' (w— wi)} :
well Mt

(ol = Wl 1) + 9w = w0))

_ a?,v (2}7 (Iwli?=2w] w + [[wl|?) + f(we) + V£ (wi) T (w ‘“’”) ’

1

_Z—m

_ 1 (w —wy) + Vf(wy).

Tt

(2w — 2wy + 0) + 0 + V f(wy),

Setting the gradient to zero and rearranging give the desired output.

Wil = Wy — 0V f(wy).
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What went wrong here?
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Theorem 5.1. Let us assume f is conver and smooth with constant B then if we select n < % we will
have monotonic decrease in function value after each step.

Proof. From our assumption that f is convex and smooth with constant # then by the definition of the
smoothness we have:

Vxy, f(x) ~ 1y) = V1) (e~ y)I< 2 lx -yl

Rearranging gives:

Fx) < 1y) + VI (=) + 5 lx — v

Let x = w1 = w; —nVf(w), y =w; and hence x —y = —nV f(w;). Plugging this in gives:

o) < 1w+ (=I5 P+ 5119 w012

o) < fw) =0 (1= 20} IV wi) P

Hence if 1 — % > 0 we will have a decrease. Rearranging this condition gives the desired result.
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5.3 What if we don’t know what the smoothness constant is?

Simply try a bunch of different values, and keep the one that works best. This process is know as cross
validation or hyperparameter tuning.

5.4 What if we don’t have a smooth function?

What if our function is only Lipschitz continuous and not smooth? well we can still prove GD asymp-

totically converges to the optimum for convex function but only with a decreasing step size such as

??t:%x;
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_ine Search Methods g 2

5.5 Line Search Methods

Line search methods contain two key components:
1. A method for proposing points, typically backtracking procedure.

2. A condition to determine where a point is accepted.




_ine Search Methods Hin .,

SCIENCE

Backtracking Line Search At time ¢ a point we first select a point w; — 1 oV f(w¢) check the point
meets the acceptance conditions, if not n; 41 = v - 1 where v € (0,1).

Armijo-Goldstein Conditions

f(we =0, VI(we)) < f(we) —ene, [[VF(we)|?, 0<ec

Wolfe Conditions

fwe = n, Vf(we)) = f(we) < ene, ||V f(we)l|%
Viwe — 0, V(W) ' VI(w) > c|[V(w)]? 0<e <ep <1

Question: Why might one prefer the Armijo-Goldstein Conditions?
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Armijo-Goldstein Conditions for Backtracking Line Search

v
=
3]
=
=
o
=
L]
=
=1
L

= flxi + apg)
fxe) + Clﬂ?fgﬂk
fixg) +(1— c1)avflp;

Acceptable a (Goldstein)
fxg)
First Acceptable a” (Goldstein)

T T T T T
0.00 0.25 0.50 0.75 1.00
Step size o
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Algorithm 2 Back Tracking Line Search

Require: ~: learning rate

Require: o: scaling factor

Require: f: objective function

Require: wyq: initial parameter vector
Require: c: Armijo-Goldstein Hyper-parameter
Require: k,,,,: max number of inner iterations

fort=1,.---,T do

Mtg = 7Y
for k in range ke do
i f(We — 01, V(W) < f(wi) — ey, [|VF(w:)|> then
Wit = Wi — 1, V f(We)
Break
else
Mt = Q- Mty
end if
end for
end for
return w
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Second Order Methods

W;t1 = argmin {f(wt) + Vf(Wt)T(w —wy) + .
wel)

%(W —wy) T Hy(w— Wt)) :

1

8% (f(wt) +Viw) " (w—wy) +

0

= Hw (f(wt) + Vf(wt)T(w — W) + 5

(WTHfW — ZWTHth + W?wat)) y

(0 + Vf(we) + 5 ! (QHfW —2H ;w; + O))

=V f(w) + Hyw — Hyw,
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Setting the gradient equal to zero:
0=Vf(w)+ H;w— Hpwy,
—Vf(w:) = Hiw — Hywy,
—Hjc_lVf(wt_) =W — Wy,
W =W — Hf_IVf(wt).

What do you notice about this update?




Stochastic Gradient Descent (SGD) gggﬁ%ﬂﬁm

SCIENCE

fw) 2 & 3 (w) & Buesll(w)

Gradient Descent

, 1
Wil = argmln{2|w — w2+ f (W) + Vf(wy) ' (W — wt)} :
weld yr

Wip1 = Wi — NtV f(We).

Stochastic Gradient Descent

: 1
W;,1 = argmin {||w — wy||2 L., (W) + Vi, (wy) ' (w — wt)} :
we znt

Wil = Wy — N VL, (Wt)-
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SGD without momentum SGD with momentum

https://production-media.paperswithcode.com/methods/Screen_Shot_2020-05-28_at_3.25.40_PM_YB87HvA.png
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SGD with momentum

Nestarov Momentum

IIlO:O,

miy1 = UII — 77tvgzt (Wt)a

Wip1 = Wy — 0 VE,, (W) + pmy.
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SGD with momentum

What happens to the update if the gradient is

constant?
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* Poorly scaled dimension - high condition number




What is causing this zig-zagging? gggﬁﬂaﬁmm
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Dimension with very different scales:

v < 0.9v_1 + 0.1V4,, (Wt)z
n
0, (W
o e (We)

Wil <& Wi —
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 What if you don't have access to the gradient?

* One must use optimisers that rely on function values

* Many gradient free optimisation algorithms exist

 In this class we use the "3 point” method as an illustrative example




Gradient Free Opt

Algorithm 1 Non-Stochastic Three Points Method

Require: 7n: learning rate

Require: f: objective function
Require: D: distribution over trial direction that spans R* for example P(D = e;) = 1/d
Require: wy: initial parameter vector

fort=1,---,T do
p: ~D
Wy & {Wt — NPt, Wi, Wy +’r]pt}

Sat

Wii1 < argming .y, f(W:) {try all three values and pick the best}

end for
return wo

Ol
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N
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What do you think might be the disadvantages of this approach?
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